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Abstract 

Current turbulence models for simulating natural convection require too much computation time or do not give 
sufficiently accurate results. A one-equation near-wall model is developed that incorporates the use of direct numerical 
simulation data (Ra = 5.4 x IO’) to remedy these shortcomings. The use of this near-wall model along with the standard 
k-E model for the outer-wall region, yields good predictions for mean flow and turbulence in natural convection and 
significantly reduces computational cost. @I 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
A,, A, constants used in the one-equation models 

Cl<, Cz,, Cre constants used in the E equation 
C, constant used for calculating v, 
dk diffusion of turbulent kinetic energy 
g gravitational acceleration 
gi component i of the gravitation vector 
Gk gravity production of turbulent kinetic energy, 

- &,u,t 
Gr, local Grashof number, /?gAT,v3/v2 
h convective heat transfer coefficient - 
k turbulent kinetic energy, u&2 
L characteristic length 
Nu, local Nusselt number, hx/l,, 
P, shear production of the turbulent kinetic energy, - 
-U,lljaUi/a~, 
Pr Prandtl number 
Pr, turbulent Prandtl number 
P, total pressure 
p fluctuating pressure 
Ra Rayleigh number, pgATL*/vI 
T mean temperature 
T, ambient temperature 
t fluctuating temperature or time 
Vi component i of the mean velocity 
U, V, W mean velocity component in x, Y and z direc- 
tion 

* Corresponding author. 

u, u fluctuating velocity component in x, y direction 
ui component i of fluctuating velocity 

u, friction velocity, && - 
y, Reynolds stress 
u,t turbulent heat flux 
V, characteristic velocity, ,/@?% 
x, Y, z spatial coordinate 
Y, normal distance to the nearest wall 

Yf, Y*, Y”* dimensionless wall distance, y,u,/v, yn&v, 

YIIIV. 

Greek symbols 

/I thermal expansion coefficient, - l/p ap/aT 

alj Kronecker delta 
E turbulent energy dissipation 
1 thermal conductivity 
v molecular viscosity 
vt turbulent viscosity 
R fluid density 
ok, Q, Prandtl number of k and E 

z, wall shear stress. 

Superscript 

time-avEraged quantities. 

Subscripts 
i, j spatial coordinate indices 
ref reference conditions 
t turbulent quantities. 
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1. Introduction 

1.1. Objectives of the current study 

The prediction of buoyancy-affected flows, such as air 
movement in building enclosures, air flow around elec- 
tronic equipment, and coolant flow in nuclear reactors, 
requires proper turbulence modeling. The turbulence 
models currently available, such as low-Reynolds-num- 
ber k-c models (LRN KEM) and Reynolds-stress models 
(RSM), demand either placing very fine grids in the near- 
wall region (in LRN KEM) or solving many differential 
equations simultaneously (in RSM). To and Humphrey 
[l] found that, for LRN KEMs, at least five grid points 
are needed in the viscous sublayer (y’ < 4) and about 
17 in the buffer region. Use of LRN KEM or RSM 
in three-dimensional applications requires a high-speed 
computer that is not available for most engineers. Hence, 
it is necessary to develop an accurate, cost-effective tur- 
bulence model for calculating buoyancy-affected flows. 

In this paper, we propose a new two-layer turbulence 
model for simulating buoyancy-induced air flows. The 
development of this model has employed the direct 
numerical simulation (DNS) data from a recent study 
[2]. The DNS data are used to conduct a term-by-term 
assessment of the turbulent kinetic energy equation and 
to develop a new one-equation near-wall model. This 
near-wall model, together with the standard KEM [3] 
or RSM for the region away from walls, can reduce 
computing cost considerably. The near-wall region 
requires only 7-10 grid points to produce acceptable 
results, compared with 20-30 points needed by a LRN 
KEM. This new model has been used to calculate four 
natural convection flows, and the results have been com- 
pared with DNS or experimental data. 

1.2. Earlier work 

I .2.1. Experimental studies 
Many experimental studies of turbulent natural con- 

vection have been performed during the last two decades. 
These experiments fall into two major categories: tur- 
bulent boundary layer flows and turbulent cavity flows. 
Pioneering experimental studies of the turbulent bound- 
ary layer flows were by Warner and Arpaci [4] and Cheese- 
wright [5]. These authors primarily measured the overall 
heat transfer and mean flow quantities. Measurements 
of turbulent structures were provided by Smith [6] and 
Cheesewright and Doan [7], who used hot-wire anem- 
ometers, and Miyamoto and Okayama [8], who used 
laser Doppler velocimeters (LDV). Tsuji and Nagano [9, 
lo], systematically investigated mean flow characteristics 
and turbulence quantities, such as Reynolds-stresses, by 
using the V-shaped hot-wire technique. Their measure- 
ments are highly reliable and have been used by many 
other researchers [ll, 121. 

Turbulent natural convection in cavities was first inves- 
tigated experimentally by Elder [ 131, Giel et al. [14], and 
Cowan et al. [15]. However, the experiments were con- 
ducted using water rather than air and did not include 
measurements of turbulent quantities. Cheesewright et 
al. [16] measured the mid-height’s mean velocities, the 
core temperature profile and some turbulence statistics 
in an air-filled room with differentially heated walls. The 
Rayleigh number studied is on the order of 10”. Olson 
et al. [ 171 performed an experiment of natural convection 
in an air-filled room and in a small-scale model with and 
without partitions, with a Rayleigh number on the order 
of 10”. They visualized the flow and measured the tem- 
peratures in the core and wall boundary layer. Secondary 
recirculating loops were found in their experiments. 
Recently, Dafa’Alla and Betts [ 181 conducted measure- 
ments in a tall, air-filled cavity with an aspect ratio 28.6 
and a Rayleigh number of 8.3 x lo5 based on the cavity 
width. They used a laser Doppler anemometer to measure 
the velocity and velocity fluctuations, thermocouples to 
measure the temperature and temperature fluctuations. 

These experimental investigations are essential to vali- 
date numerical models. Once validated experimentally, 
the numerical models are less expensive and can provide 
more detailed information about the buoyant flows than 
the available experimental method. 

1.2.2. Numerical simulations 
Similar to the experimental studies, the numerical 

investigations may also be classified according to tur- 
bulent boundary layer and turbulent cavity flows. Con- 
tributions to the numerical studies of turbulent natural 
convection along a vertical, heated, flat plate are due to 
To and Humphrey [l], Henkes and Hoogendoorn [19], 
Peeters and Henkes [20], and Yuan et al. [ll], among 
many others. To and Humphrey employed a LRN KEM ; 
Henkes and Hoogendoorn adopted an algebraic model 
and several LRN KEMs; Peeters and Henkes used a 
RSM ; and Yuan et al. used a KEM with wall functions 
derived from the experimental data in ref. [9, lo]. Results 
from these works indicate that the LRN KEM, RSM and 
standard KEM with proper wall-boundary modeling are 
able to predict mean flow. However, the computations 
require either the use of very fine grids or the solution of 
many differential equations. 

Contributions to the numerical simulation of natural 
convection flows in cavities include those of Henkes et 
al. [21], Chen [22], Lankhost et al. [23], and Hanjalic et 
al. [24]. Henkes et al. [21] used the standard KEM and 
several LRN KEMs to simulate natural convection in a 
differentially heated, air-filled, square cavity with Ray- 
leigh numbers up to 1014. They found that the standard 
KEM overpredicts wall heat transfer but that the LRN 
KEMs provide more accurate predictions. Chen [22] 
employed several RSMs to calculate the natural, forced 
and mixed convection flows in rooms and found the 
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performance of the different RSMs was similar. His 
results agreed with mean flow measurements but showed 
less satisfactory agreement for the turbulent quantities. 
Lankhost et al. [23] made use of the standard KEM and 
wall functions to srmulate air flows in a room with a 
radiator. They used wall functions to determine k and 
E but abandoned the wall functions when determining 
velocity and temperature. A very find grid distribution 
was necessary to resolve the large gradients of velocity 
and temperature in the boundary layers. The Rayleigh 
number in their study was about 3 x 10”. Hanjalic et al. 
[24] applied a three-equation and a four-equation model, 
k - E - O* and k - E - e’ - .Q, and incorporated LRN modi- 
fications to calculate air flows in several empty and par- 
titioned rooms. The Rayleigh numbers in their study 
ranged from 10’“-10’2, which is the range observed in 
building enclosures. Their computed mean temperatures 
and velocities agreed with the corresponding exper- 
imental data. 

For most of the above numerical simulations to pro- 
vide satisfactory re:sults, they must use fine grids in 
boundary layers or :solve many transport equations. 

1.2.3. Direct numerical simulations 
DNS has drawn much interest in recent years. Phillips 

[25], used DNS to (calculate the turbulent natural con- 
vection in a differentially heated vertical slot at a Rayleigh 
number 1.57 x 105. Paolucci [26], investigated the natural 
convection in a square cavity by DNS with Rayleigh 
numbers up to 10”‘. Xin et al. [27] computed flows in 
two cavities with aspect ratios of 1 and 4 and Rayleigh 
numbers up to 10” A recent study conducted by Ver- 
steegh and Nieuwstadt [2] computed the natural con- 
vection along a pair of infinite plates at a Rayleigh num- 
ber of 5.4 x 10’. An independent study by Boudejemadi 
et al. [28] confirmed the results from Versteegh and 
Nieuwstadt. Do1 et al. [29] pointed out that the study by 
Boudejemadi et al. used a shorter spanwise length in the 
simulation, which has artificially enhanced the turbulence 
level. Both DNS res.ults [2, 281 are also confirmed by a 
recent experiment in a tall cavity with aspect ratio of 
28.6: 1 [18]. 

Due to the simplicity of the geometry and reliability of 
the data in the study by Versteegh et al. [2], we have 
chosen to employ their results to perform a term-by-term 
assessment of the k-equation model and develop a new 
one-equation near-wall model for computing turbulent 
natural convection. 

2. One-equation modeling in the near-wall region 

The flow geometry on which the DNS [2] was per- 
formed is shown in Figs 1 and 2, in particular, show the 
results of Ra = 5.4 x 105. 

The DNS data indicate that some near-wall charac- 

teristics of natural convection are quite different from 
those of forced convection. Figure 1 b shows that the local 
equilibrium (shear production over dissipation) is not 
established. Figure lc indicates that the well-known log- 
law velocity profile is not valid in the boundary layer 
of the natural convection. These significant differences 
suggest the need for a detailed analysis of the near-wall 
one-equation model. 

2.1. Assessment of the k-equation models 

Eddy-viscosity concept requires a length scale and a 
velocity scale in order to compute the eddy-viscosity. In 
one-equation turbulence models, the length scales are 
usually obtained empirically and the velocity scale is 
obtained by solving the turbulent kinetic energy equa- 
tion: k-equation. The exact (without turbulence mod- 
eling) k transport equations reads 

ak ak 
at +U,% = d,+P,+G,--E 

where 

(4 

represents total diffusion contribution from turbulence, 
pressure and viscous transport. The shear production 
term reads 

p =_,auI. 
k 

i ‘dx, 

The buoyancy production/destruction term is 

If the overheat ratio AT/Tref is small, the Boussinesq 
assumption is valid and the buoyancy term can be further 
simplified to 

G, = -flg;u,t (5) 
where gi is the gravity vector component and /I is the 
thermal expansion coefficient. The last term of equation 
(1) denoted as E, represents turbulence dissipation : 

aui au, 
E=Vax,ax, (6) 

The DNS data gives the budgets of the k-equation as 
shown in Fig. Id. In the region where y+ < 2, the viscous 
diffusion and the dissipation are dominant and balance 
each other. The region 2 < JJ+ < 10 has a negative shear 
production. Gravity production is positive in this region. 
For large value of y+ (>40), shear production becomes 
positive and actually dominated over gravity production. 

The exact k-equation introduces the following 
unknown quantities: u,uiuk, pui, uIuj, u,t and E. Unless 
additional transport equations are introduced to solve 
for these quantities, these quantities have to be modeled. 
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Fig. 1. Analysis of the boundary layer of natural convection. (a) The geometry and boundary conditions of a pair of infinitely long 
plates ; (b) the ratio of shear production and dissipation ; (c) velocity profiles ; (d) k-equation budgets. 

The left-hand-side of the exact k-equation is known, and 
it does not require modeling. The right-hand-side terms 
and their models are listed in Table 1. The modeled forms 
are obtained by substituting the following eddy-viscosity 
assumptions into the exact form : 

lP l- v, ak 
- 2 UIU,Ui + ,pu, = - - 

ck axj (7) 

-~=v,(~+~)+,k (8) 

- v,dT -_u,* = -- 
Pr, ax, (9) 

k3/2 
e=- 

4 
The eddy viscosity is computed by 

v, = CJG, 

Applying the following conditions : 

(10) 

(11) 

a 
&==O, g=ov= w=o (12) 

which are appropriate for the configuration shown in 
Fig. la, to the modeled forms, yields the expanded form 
shown in Table 1. 
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Fig. 2. Analysis of the k-equation. (a) vt ; (b) dk ; (c) P, ; (d) Pr, (DNS data). 

5 

In order to examine the accuracy of these models, 
we have conducted a term-by-term evaluation of the k- 
equation models. This evaluation uses the DNS data to 
determine the exact and modeled forms. Equations (7)- 
(9) introduce the eddy-viscosity term. If the vt calculated 
from the DNS data by : 

(13) 

there are negative values and two sharp peaks in the vt 
distribution (see Fig. 2a), which would not occur by using 
equation (11). This is due to so-call counter-diffusion 
phenomenon and the velocity maximum. A positive and 
smoothed vt, as shown in Fig. 2a, has been used for this 
investigation. Figure 2b compares the diffusion term with 
its model. In most of the region, the eddy-viscosity model 
could describe the diffusion term, although the modeled 
dk is not as smooth as the exact one. Figure 2c gives the 
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Table 1 
The exact, modeled and expanded form of the k-equation 

Exact form Modeled form Expanded form 

Turbulence diffusion 

Pressure diffusion 

Viscous diffusion 

Shear production 

Gravity production 

Dissipation 
au, au, ,,-- 
ax, ih, 

k'2 
b 

comparison of the shear production calculated by the 
exact and modeled form. The modeled form agrees with 
the DNS data fairly well, except that the negative pro- 
duction cannot be reproduced, since the shear production 
term in the expanded form, 

au 2 
vt ay ’ (-1 
cannot be negative. 

The gravity production term, -figZz, as shown in 
Table 1, disappears after applying equation (9) to the 
unstratified temperature distribution. This problem has 
also been noted in several previous studies on the vertical 
boundary layers of the natural convection [ 1, 201, where 

a a 
cay. 

Mason et al. [3 11 proposed 

and Plumb et al. [32] suggested -bgiu,t = /?g,fi. 2.2. Assessment of the length scales models 

Their proposals are suitable for some particular cases 
but are not universal. Hanjalic and Vasic [33] introduced 
an algebraic equation to solve for u,t and obtain sat- 
isfactory results for the natural convection in cavities but 
with extra computational efforts. To and Humphrey [l] 
concluded that using gravity production term as zero has 
a small influence on the mean quantities, but leads to 
7% underprediction of k. The present investigation uses 
equation (9) as the buoyancy production model. 

To compute the dissipation and eddy viscosity, two 
length scales need to be specified. For the near-wall 
region, the length scales used in the one-equation models 
often follow the Van Driest’s damping law as : 

Equation (9) can also be used to determine the tur- 
bulent Prandtl number. Figure 2d shows Pr, computed 

by 

4, = Gv.U - ew(--y*lA,J) (14) 

L = C,Y,(~ - exp(-_y*lA,)) (15) 

where C,, A, and A, are model constants. The use of y* = 
$y./v here, rather than y+, can extend the application 
of equations (14) and (15) to separated flows [35]. Norris 
and Reynolds [34] proposed a different form for 1, : 

pr, = y CT 
i ‘dy, 
-z 

from the DNS data. As y+ decreases in the range 
0 < y+ < 15, the Pr, decreases as well. This differs from 
the well-known behavior of Pr, in forced convection 
where Pr, increases beyond 1 as y+ decreases in the 
0 < y+ < 10 [30]. However, Pr, approaches 0.9 when y+ 
exceeds 30. Henkes et al. [19] found that increasing Pr, 
from 0.9 to 1.0 leads to just 5% difference in the wall 
heat transfer. They concluded that Pr, had only a small 
effect on the results. These facts suggest that a constant 
value of 0.9, which is also used by To and Humphrey [ 11, 
is still a reasonable choice. Therefore, it is also used in 
the present investigation. 

The last term on the right-hand-side of equation (I), 
E, represents the turbulent energy dissipation and will be 
discussed in the next section since it involves the modeling 
of length scales. 
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1, = 
C/Y, 

1+53/y* 

Durbin [36] and Rodi et al. [37], suggested using the 
square root of the wall-normal stress & instead of 
4 as a velocity scale. Based on this suggestion, Rodi et 
al. proposed : 
1, = 0.33y, (17) 

1, = 
1.3Y” 

1+2.12/y,* 

where 

(18) 

y*=y&& 
Y v 

Note that the formulas used to compute vt and E are 
changed to 

v, = &I, 

&k 

&=r 

(19) 

(20) 

where vu is calculated by an algebraic equation given in 
Ref. [37]. 

Rodi [35] found ‘encouraging results with the two-layer 
models (applying the above equations (14) or (17) for l,, 
and (15) or (16) or (18) for I,, with (19) and (20) for v, 
and E, to the near-wall region and the standard KEM or 
a RSM to the outier region). The two-layer models use 
less grid points than LRN KEMs and are more accurate 
than the wall functions. However, most of the one-equa- 
tion models were developed for forced convection flows 
such as isothermal channel or boundary layer flows. In 
forced convection, the structure parameter uv/k is com- 
monly believed to be approximately 0.3 under local equi- 
librium conditions However, Fig. 3a shows that uv/k in 
natural convection is not a constant. Furthermore, using 
the DNS data, Fig. 3b compares 1, of Van Driest’s damp- 
ing law (equation (14)) with the 1, from equation (11) 
with DNS data. Fzgure 3c compares the 1, proposed by 
Rodi et al. [37] (equation (17)) for forced convection 
flows, with the exact 1, determined from equation (19). 
Clearly, the Van Driest’s damping law and Rodi’s model 
could not predict the 1, in natural convection. Figure 
3d further compares the 1, calculated from Van Driest’s 
damping law (equation (15)) and the Norris and 
Reynolds’ model ((equation (16)) with the exact lr deter- 
mined from equation (10). The 1, proposed by Rodi et al. 
(equation (18)) is compared with the exact 1, determined 
from equation (20). The comparisons show that equa- 
tions (15), (16) and (18) are not appropriate for the 
natural convection boundary layers. Thus, it is necessary 
to derive a new near-wall model for natural convection. 

2.3. A new one-equation near-wall model 

2.3.1. 
Modeling 1, and 1,. For the near-wall region, Durbin 

[36] suggested using J& as the velocity scale in order to 

avoid artificial damping functions in the length scales. 
Rodi et al. [37] applied this concept to develop equations 
(17) and (19) for the channel and boundary layer flows 
of forced convection. For natural convection flows, the 
DNS data gives the profiles of 1, and I, shown in Fig. 3c 
and e. The following equations can fit these profiles fairly 
well : 

1, = 
0.544y, 

1+5.025 x 10-4y*’ 65 
(21) 

Y 

1, = 
8.8~” 

1+ lo/y;+515 x lo-*y,* 

where 

y* = YnJUV 
v . 

(22) 

The new 1, and 1, are shown in Fig. 3c and e, respec- 
tively. Note that equation (22) correctly retains the 
characteristics of E near the wall : E cc y” [37]. 

2.3.2. Modeling of vv 
Introducing vu to the one-equation model requires an 

additional correlation between % and k. The DNS data 
give the fi profile shown in Fig. 3f. The following 
curve-fitting formula is used in the present study : 

; = 7.19 x 10~3y”-4.33 x loWy*2+8.8 x 1oWy*3 

(23) 

Since the available DNS data are obtained under par- 
ticular geometry and Rayleigh number, equations (21)) 
(23) need further validation for other geometry and con- 
ditions. The form of these formula might not be unique. 
However, as long as the correlation holds in most natural 
convection boundary layer, equations (21)-(23) can still 
be safely used. 

2.4. A new two-layer model 

The proposed one-equation model solves only one 
transport equation (the modeled form of the equation 
shown in Table 1) and calculates vu with equation (23), 
I,, with equation (21), I, with equation (22), and obtains 
vt, and E with equations (19) and (20). This new model is 
applicable in the near-wall region. In the outer region, 
one could employ the standard KEM, i.e., k is solved by 

where ok = 1.0. The E is not calculated by equation (20) 
but solved by a transport equation : 
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Fig. 3. Comparison of the one-equation near-wall models. (a) m/k ; (b) dimensionless length scale I, + = l,uz/v ; (c) dimensionless length 
scale 1: ; (d) dimensionless length scale 1: = I&Y ; (e) dimensionless length scale 1: ; (f) E/k. 
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where gE = I .3, C,, = 1.44, C,, = 1.92, C,, = 1.44. Again, 
the vt in equations (24) and (25) is not calculated by 
equation (19) but by v, = C, k2/&, where C, = 0.09. A 
new two-layer model can be easily formed by using the 
one-equation model in the near-wall region and the stan- 
dard KEM in the outer region. Other combinations, such 
as using a RSM in the outer-wall region or using an 
algebraic flux model (e.g. the one developed by Hanjalic 
and Vasic [33]) for calculating buoyancy production, are 
also possible and will extend the application of the two- 
layer model to more complex buoyancy-driven flows. 

In the present study, the two-layer model consists of 
the one-equation model within y* < 160 and the stan- 
dard KEM for y* .z 160. The reason to use y* = 160 as 
a switching criterion is that the new one-equation model 
is consistent with the DNS data [2] within y* < 160 (or 
y+ < 60), as shown in Fig. 3. Hereafter, this switching 
method is defined as a y*-prescription method. The y*- 
prescription method is also used in the two-layer models 
for forced convection (Rodi et al. [37]). The forced con- 
vection has a higher y* in the outer region than in the 
near-wall region and thus ensures that the models will be 
switched as desired. However, for natural convection, 
portion of the switlching may not occur due to small y* 
in the laminar outer region. To solve this problem, two 
alternatives could be considered : 

(1) to use y+ (x 680) instead of y* as the model-switch 
criterion ; 

(2) to match two models at pre-selected grid lines run- 
ning along the wall. 

Method 1 does not apply to separated flow since 
y+ = 0 at the separation point. Method 2 requires pre- 
knowledge of the fl.ow, since the selection of the switch 
lines leans heavily on experience. Furthermore, we found 
that the results of the method 2 and the y*-prescription 
method does not d:ffer significantly. In the applications 
of the LRN KEMs in natural convection flows, such 
as in Refs [I, 191, the damping functions designed for 
resolving the wall-clamping effects were also used in the 
outer region. Therefore, the y* = 160 rule is used in the 
present study. 

The following section will describe the application of 
the new two-layer model with they* prescription method 
to several natural convection cases. 

3. Applications of the new two-layer model 

Four natural convection cases were selected to validate 
the new two-layer model : 

(1) natural convection along two vertical, parallel, infi- 
nitely long plates (Fig. la). 

(2) natural convection along a heated, vertical, flat plate 
(Fig. 5a). 

(3) natural convection in a cavity with an aspect ratio of 
5 (Fig. 6a). 

(4) natural convection in a room with differentially 
heated vertical walls and an aspect ratio of 2.5 : 7.9 
(Fig. 7a). 

A commercial CFD code, PHOENICS [38], was 
extended to include the two-layer model described in the 
previous section and was used for the validation. By 
default, PHOENCIS uses the finite-volume method. The 
differential method for the convection term of all differ- 
ential equations used the upwind-difference-scheme. 
Staggered grids and SIMPLEST [38] method were used 
for decoupling the pressure and velocity fields. Grid dis- 
tribution adopts the power-law spacing method [38]. The 
grid numbers and the values of the power are listed in 
Table 2. The under-relaxation used liner relaxation for 
the pressure and false-time-step method [38] for all other 
variables. The value of the under-relaxation factors are 
also provided in Table 2. The convergence criterion was 
set such that the respective sums of the absolute residuals 
of sources of U, V, P, T, k and E must be less than lo-‘, 
where P actually refers to the continuity equation. 

3.1. Natural convection along two vertical, parallel, 
infinitely long plates 

The geometry and boundary conditions of this case are 
shown in Fig. la. This configuration corresponds to a 
very tall differentially heated cavity with negligible influ- 
ence from the horizontal walls. As a very rare case in 
practice, little experimental data were available until the 
recent contributions from Dafa’Alla and Betts [18]. The 
Rayleigh number is 5.4 x lo5 based on the distance 
between two plates. The DNS performed by Versteegh 
and Nieuwstadt [2] uses the same geometry and Rayleigh 
number. 

Equation (12) is applicable since the plates are infi- 
nitely long in both the x and z directions. Hence the case 
can be simplified to a 1-D problem so that only the 
boundary conditions at the plates need to be specified. 
At the plates, the no-slip and fixed temperature boundary 
conditions holds for the velocity U the temperature T, 
respectively. The turbulent kinetic energy is zero at the 
plates. The turbulence dissipation rate E is determined 
from equation (20). Since vu ccy” and k cc y’, the use of 
equations (20) and (22) implies E cc y” as y goes to zero. 
It is worth mentioning that an estimation of E value at 
wall 
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Fig. 4. Natural convection between two infinitely long plates. (a) Mean velocity; (b) mean temperature ; (c) turbulent kinetic energy 
(d) turbulent dissipation ; (e) shear-stress z ; ( f) turbulent heat flux. 
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Fig. 5. Natural convection along a heated vertical plate (the data arc from Tsuji and Nagano [9, lo]). (a) Geometry and boundary 
conditions ; (c) mean temperature ; (d) shear-stress ; (e) local NU number. 

[I], gives surprisin,gly good agreement (1.2% error) with 
the DNS data. In this case, the two-layer model withy*- 
prescription method reduces to the one-equation model 
since y* < 160 everywhere. 

The mean velocity and temperature in this case are 
asymmetrical and k and E are symmetrical about the 
center line (dashed line in Fig. la). Results from the 
calculation using -10, 14, 20 and 40 grid points in the y 
direction are shown in Fig. 4. Figure 4a and b shows the 
mean velocity and temperature profile. The velocity has 
been non-dimensionalized by the characteristic velocity, 
V, = dm, and the temperature by the temperature 
difference AT. L represents the distance between two 
plates. These figures indicate that the new model predicts 
the meanflow well. The influence of grid number is neg- 
ligible in the temperature and minimal in the velocity 
profile. Note that the position of the peak velocity is also 
well predicted. Fig. 4c and d illustrates the results for the 
non-dimensionalized k and E. The absence of the gravity 
production term, as mentioned in previous section, leads 
to an under-prediction of k and E by 20%. However, the 
trend of E distribution in the immediate near-wall regions 
(y/L < 0.05 and y/L > 0.95) is correctly obtained, which 

confirm the model of 1, given in equation (22). Fig 4e and 
f further compares the shear-stress computed by 

- au 
liv = --iF (26) 

and the turbulent heat flux by 

- v, aT f_lt= --- 
m ay 

with the DNS results. Equation (26) predicts negative 
values for uv my/L < 0.05 and y/L > 0.95, since both v, 
and velocity gradient are positive in this region. The & 
from DNS data, however, is positive in these regions. 
This discrepancy might be attributed to the counter- 
diffusion phenomenon. Figure 4f indicates that 10 grids 
gave poor results in turbulent heat flux. At least 14 grids 
are needed for this case. 

The results suggest that, in the region where the one- 
equation model is applicable, i.e. y* < 160, five grid 
points are sufficient to predict the mean flow. Better 
agreement for the turbulent quantities requires seven-ten 
grid points. Further increase of the grid number would 
not yield significant improvement in accuracy. 
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Fig. 6. Natural convection in a cavity with an aspect ratio 5 : 1 (the data are from Cheesewright et al. [16]). (a) Geometry and boundary 
conditions ; (b) mean velocity at mid-height ; (c) mean temperature in the core ; (d) velocity fluctuation ; (e) local NM number. 

3.2. Natural convection along a heated, vertical,jat plate 

Figure 5a shows the plate sketch and a brief summary 
of the boundary conditions. The boundaries of the com- 
putation domain are identified by A, B, C, D and E. AB, 
BC, CD etc. are used hereafter to represent the physical 
boundaries between the points A and B, B and C, C and 
D, etc. respectively. Tsuji and Nagano [9, lo] performed 
detailed experimental studies for this case. They 
measured mean flow and some turbulence quantities at 
locations x = 1.44, 2.54, 3.24 m, etc., where x measured 
from the bottom of the plate. 

Our computation used the boundary conditions 
suggested by Yuan [39], which were different from those 
used by To and Humphrey [l] and Henkes et al. [ 191. To 
and Humphrey specified the laminar U and T profiles 
at x = 0.05 m and artificially introduced the turbulence 
quantities at a prescribed location : Gr, = 2 x 109. Henkes 
et al. used a similar method and even assumed v,/v = 20 at 
the free boundary CD (see Fig. 5a). Hence, their studies 
presumed knowledge of this flow. In contrast, this study 
used stagnant conditions at the boundary BC and CD 
except that the normal velocities (U at BC and Vat CD) 

were not specified. The total pressure Pt was fixed at 
zero at BC and CD. These specifications computationally 
allowed the flow to enter the domain through BC and 
CD as the buoyancy force drove the fluid out through 
DE. A very small value of k and E (lo-“) was prescribed 
on BC and CD to initialize the turbulence calculation. 
CD is far from the plate so that the undisturbed con- 
ditions were applied. The fully developed conditions, 
a/ax = 0, were assigned to the boundary ED for all vari- 
ables. EA is an extension of the plate designed for relaxing 
the end effect of the plate and used the symmetrical con- 
ditions. Finally, the wall AB adopted no-slip, zero k and 
fixed-temperature conditions. 

These boundary conditions were adopted in the current 
study because they do not require any additional infor- 
mation, such as the transition location X, used in Refs 
[ 1, 191. Since Tsuji and Nagano [9, lo] measured the 
velocities and temperature very close to the plate, the 
computation required a very fine grid (38 x 56) to com- 
pare the results with the experimental data. Still, this grid 
is much coarser than that used in Ref. [19], (72 x 80). 

The results of the computation are shown in Fig. 5. 
Figure 5b-e compares the predicted results at x = 2.54 
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Computational details of four natural convection cases 

Relaxation factors 
Case Computational object Grid distribution d,/L = (i/w”’ U V P T k c 

1 Two infinitely long parallel plates lo-40 grid points in JJ direction m = 1.5 100 ~ 0.8 1 0.1 1 
2 A 4 m x 1 m plate 30 grid points in x direction, m = I 0.1 0.1 0.8 0.1 0.1 0.1 

56 grid points in y direction, m = 1.5 
3 A 2.5 m x 0.5 m cavity 3G50 grid points in x direction, WI = 1.8* 0.1 0.1 0.8 0.1 0.1 0.1 

3&50 grid points in y direction, m = 1.5* 
4 A 7.9 m x 2.5 m room 70 grids in x direction, m = 1.8* 0.1 0.1 0.8 0.1 0.1 0.1 

30 grids in y direction, m = 1.5* 

Notes : d, : ith coordinate of the grid ; L : full length of geometry in the specified direction i : grid index ; N: total grid number in the 
specified direction ; m : the spacing power. *The direction uses a symmetrical grid, consisting of power-law grid points that start at 
each end and meet in the middle 

m with the measured data from Tsuji and Nagano [9]. 
Figure Sb and c shows the mean-flow quantities. The 
two-layer model over-predicts the peak value of the vel- 
ocity by about 10%. The temperatures predicted are 
within reasonable agreement with the experimental data 
but the discrepancy can be as large as 8°C in some areas. 
Figure 5d shows the shear stress calculated by equation 
(26). In the region where the velocity U is increasing 
with respect toy, i.e. aU/ay > 0, equation (26) calculated 
negative values of uv, but the measurements give positive 
uv. This effect might also be attributed to the counter- 
diffusion phenomenon. Figure Se compared the com- 
puted and measured local Nusselt number. The computed 
values are higher than the experimental data. This dis- 
crepancy occurs because the two-layer model was used 
to calculate the entire plate even though only part of it 
was laminar. Particularly in the laminar region close to 
the leading edge, the use of a turbulence model in this 
region might predict an early transition which will 
enhance the heat transfer significantly. In fact, thew tran- 
sition point was found 0.8 m above the leading edge in the 
experiments while the computation found the transition 
location to be only about 0.2 m above the edge. 

3.3. Natural convection in a cavity with an aspect ratio 

4f5 

Natural convection flows in cavities occur in many 
practical situations, such as rooms. In this section, natu- 
ral convection in a tall cavity of 0.5 m width and 2.5 m 
height is investigated numerically with the new two-layer 
model. Cheesewright et al. [16] conducted experimental 
studies on natural convection in this cavity. Their exper- 
iments maintained isothermal conditions (65.8”C and 
20°C) on the two vertical walls and insulated the two 
horizontal walls, although, they were not ideally insu- 
lated. The Rayleigh number based on cavity height was 
5 x 10’0. 

Figure 6a shows the geometry and boundary con- 
ditions adopted in the numerical simulation for this case. 
The numerical simulation uses the isothermal boundary 
condition for the two vertical walls and adiabatic con- 
ditions for the horizontal walls. No-slip and zero-k con- 
ditions were applied at all walls. Again no boundary 
condition for E was necessary since E is determined by 
equation (20) in the boundary layer. 

Figure 6b compares the computed and measured mean 
velocity at the mid-height of the cavity. The computed 
velocity profile agrees with the experimental data. The 
measured velocities are not absolutely symmetrical about 
the center point because of the imperfect insulation on 
the horizontal walls. The predicted core temperatures, as 
shown in Fig. 6c, are higher than the measurements. This 
also may be attributed to the imperfect insulation on the 
horizontal walls that may lead to a heat loss from the 
cavity to the lab environment. Hence, the measured core 
temperatures were relatively lower. Even so, the com- 
puted and measured temperature gradients in the core 
region are similar. Figure 6d shows the velocity fluc- 
tuations at the mid-height. Only qualitative agreement is 
found between the computed results and the measured 
data. Lankhorst and Hoogendoorn [23] pointed out the 
deviations of this sort are due to the non-isotropic effects 
near the velocity maximum. The eddy-viscosity models 
assumed isotropic turbulence (equation (8)), which is 
certainly not the case near the velocity maximum. If the 
vertical component of the velocity fluctuation is larger 
than two horizontal components, better agreement 
between the numerical simulations and measurements 
can be expected with the increase of the factor 2/3 in 
equation (8). The computed local Nusselt number profile, 
as shown in Fig. 6f, agrees with the measured data. 

In addition, a grid-dependency study for this case has 
been conducted with three sets of grids : 30 x 30, 40 x 40 
and 50 x 50. Figure 6b-e indicates that the results with 
50 x 50 grid points and 30 x 30 grid points has negligible 
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differences. This suggests that 30 x 30 grids are sufficient. near-wall, one-equation turbulence model for calculating 
Lankhorst et al. [23] mentioned that, for Rayleigh num- the natural convection boundary layer. A new two-layer 
bers of the order lOlo, a minimal mesh of 4.5 x 45 grid model is then formed by applying the new one-equation 
points is needed with the standard KEM. Chen [40] com- model in the region where y* < 160 and the standard k- 
pared the performance of five difference turbulence mod- E model where y* > 160. The two-layer model requires 
els for this case and used 60 x 40 grids with the standard only 7-10 grids to simulate natural convection boundary 
KEM and 100 x 60 with a LRN KEM. It is obvious that layer. The computing cost is much less than that of a 
the new two-layer model can save computational costs low-Reynolds number k-E model or a Reynolds-stress 
significantly. model. 

3.4. Natural convection in a room with an aspect ratio qf 
2.5 : 7.9 

This section will explore the natural convection in a 
room 2.5 m in height, 7.9 m in width and 3.9 m in depth 
where Olson et al. [17] conducted experiments. In their 
experiments, two vertical walls were maintained iso- 
thermally at 20.3”C and 10.9”C, and the horizontal walls 
were well insulated. Since the front and back walls were 
also well insulated, rhe symmetry plane can be treated as 
a 2-D case. The Rayleigh number based on the room 
height was about 3 :< 10”. Olson et al. observed the flow 
pattern and measured the temperature distribution in the 
core region and in the vertical boundary layers. They 
recorded reverse flows along the ceiling and floor, which 
is rarely found in tall cavities. 

The two-layer model has been applied to calculate four 
natural convection flows : flows in a vertical slot, along a 
vertical, heated, and flat plate and in two cavities. The 
applications confirmed that the model can predict natural 
convection accurately and efficiently. 
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